Elizade University, Ilara Mokin Ondo-State, Nigeria Department of Economics 2nd Semester 2018/2019 Examinations Questions

Course Code: ECO 208 & O S Course Title: Mathematics for Economists II Instruction: Attempt any THREE questions.

Time Allowed: 2 hours

Question 1

- a) Outline:
 - i. any two categorizations of optimization problems in Economics
 - ii. the optimization conditions for the function y=f(x)
- b) Determine the number of maintenance engineers (E) that will minimize the average cost of engineers when total cost is related to the number of engineers by the following equation:

$$TC = 3E^3 - 18E^2 + 4E$$

(20 marks)

Question 2

- a) Distinguish between:.
 - i. differential calculus and integral calculus
 - ii. indefinite integral and definite integral
- iii. ordinary DE and partial DE
- iv. order of a DE and degree of a DE
- v. Young's theorem and Euler's theorem
- b) Evaluate:

i.
$$\int (X^6 + X^4 + X^2 + 4) dx$$

ii.
$$\int \frac{\cos x}{1+\sin x} dx$$

iii.
$$\int (2ax+b)e^{ax^2+bx+c} dx$$

iv. Let
$$U = \int \frac{\sin x}{a \sin x + b \cos x} dx$$
 and $V = \int \frac{\cos x}{a \sin x + b \cos x} dx$

Find:

i. aU+bV

ii. aV-bU

(20 marks)

Question 3

a) Find the relative optima of the functions:

i.
$$z = x^2 + y^2 + 4x - 8y$$

ii. $z = 4x + 6y - x^2 - y^2$

ii.
$$z = 4x + 6y - x^2 - y^2$$

b) Max
$$z = xy + 2x$$

s.t.
$$4x + 4y = 60$$

(20 marks)

Ouestion 4

a) Determine the order and degree of each of the following differential equations:

i.
$$\frac{d^2y}{dx^2} + (\frac{dy}{dx})^2 - 2y = 0$$

ii.
$$\frac{d^3y}{dx^3} = \frac{dy}{dx}$$

iii.
$$\left(\frac{d^4y}{dx^4}\right)^2 - 4\frac{d^2y}{dx^2} + 4y = 0$$

iv.
$$y - 2x \frac{dy}{dx} - y^2 (\frac{dy}{dx})^3 = 0$$

v.
$$\frac{d^2y}{dx^2} - \frac{1}{x}\frac{dy}{dx} - 3x = 0$$

b) Derive ordinary differential equations from the following equations:

i.
$$x^2 - \mathbf{e}^y = a$$

(where a is a constant)

ii.
$$y^2 - ax + a^2 = 0$$

(where a is a constant)

(20 marks)

Question 5

$$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$

Find:

i.
$$A^2$$

ii.
$$A^3$$

iii.
$$f(A)$$
 where $f(x) = 2x^3 - 4x + 5$

b) Classify the following matrices by types:

(i)
$$\begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

(iii)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

(iv)
$$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$

(iv)
$$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$
 (v)
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

(c) Let
$$X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $A = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix}$

find X'AX

(d) Obtain
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$
 using Sarrus rule

(20 marks)